Nose Cone & Fin Optimization

Tripoli Minnesota
Gary Stroick

January 2011

Purpose

Focus is on drag optimization to maximize rocket performance!

Agenda

3

- Definitions
- Mission Parameters
- Nose Cone Design
- Fin Design
- Summary
- Appendices
- References & Web Sites

- Drag Coefficient
 - Parasitic Drag
 - Form/Pressure/Profile Drag
 - Dependence upon the profile of the object
 - Base Drag
 - Due to Boundary Layer separation at base of airframe/fins
 - Skin Friction (Viscous) Drag
 - Friction of the fluid against the skin of the object
 - Interference Drag
 - Incremental drag above sum of all other drag components.
 Created at protrusion intersections.
 - Induced (Lift-Induced) Drag
 - Due to redirection of airflow
 - Wave (Compressibility) Drag
 - Due to shockwaves when moving near or above the speed of sound (typically leading & trailing edges)
 - Rotational Drag
 - Circumferential velocity from roll will thicken boundary layer and result in increased drag

- Wetted Area
 - Surface Area exposed to airflow
- Fineness (Aspect) Ratio
 - Nose Cone Length/Base Diameter
- Bluffness Ratio
 - Tip Diameter/Base Diameter
 - Hemispherical Blunting
 - Me'plat Diameter is a Flat Truncation (e.g., bullets and artillery shells)

- Laminar Boundary Layer
 - Fluid streams move in parallel (negligible transfer of momentum)
- Turbulent Boundary Layer
 - Fluid streams transverse with velocity variations around an average value
- Boundary Layer Separation
 - Boundary layer separates from object's surface creating an effective profile
- Reynolds Number
 - Dimensionless ratio of inertial / viscous forces
 - http://www.grc.nasa.gov/WWW/BGH/reynolds.html

3

- Aspect Ratio (AR)
 - Fin Span / Average Fin Cord
- Effective Aspect Ratio
 - Working AR due to Airflow Effects
- Taper Ratio
 - Tip Cord / Root Cord

Definitions

- Thrust Profile
 - Thrust vs. Time Curve
- Velocity Definitions
 - Subsonic: < .8 Mach
 - Transonic: .8 to 1.2 Mach
 - Supersonic: 1.2 to 5 Mach
 - Hypersonic: > 5 Mach

Mission Parameters

- Velocity
 - Coefficient of Drag
 - Thrust Profile
 - Total Mass
- Altitude
 - Coefficient of Drag
 - Thrust Profile
 - Total and Coasting Mass
- Mass
 - Material Volume and Strength
 - Payload
- Payload
 - Available Volume
 - Stability Impacts
- Stability (CP&CG Discussed Last Year)

Nose Cone Design

- Mission Dependent Variables
 - Payload
 - Stability (CP, CG)
- Independent Variables
 - Atmospheric Density
 - Temperature
 - Wind Conditions
 - Surface Finish
 - Angle of Attack

Nose Cone Design

- Assumptions
 - Zero Angle of Attack
 - Constant Surface Finish
 - No Roll
 - No Aerodynamic Heating Effects

Nose Cone Solutions

Subsonic¹

1. Elliptical

Transonic

- 1. LD-Haack (Von Karman)
- 2. X¹/₂ Power Series
- 3. LV-Haack (< Mach 1)

Supersonic⁷

- 1. Eggers Minimum Drag
- 2. X³/₄ Power Series

Hypersonic^{8,9,10}

- 1. Love Minimum Drag
- 2. X.6 Power Series

Fineness Ratio^{6,7}

- Increasing Fineness Ratio
 - Decreases Wave Drag
 - Increases Skin Friction Drag
 - Optimum Ratio is approximately 5

Bluntness Ratio^{2,3,5}

- Optimal ratio is .15
 - Provided length remains constant
- Applicability dependent upon fineness ratio and velocity
 - Fineness ratio ≤ 5
 - Below Hypersonic

Coefficient of Drag (C) Subsonic¹

- Primarily Skin Friction Drag
- Minimal Pressure Drag
- No Wave Drag
- No Interference Drag
- No Induced Drag
- Elliptical
 - Fineness Ratio of 2

Coefficient of Drag (Coefficient of Drag (Coefficie

Comparison of drag characteristics of various nose shapes in the transonic-to-low Mach regions. Rankings are: superior (1), good (2), fair (3), inferior (4).

- Wave Drag Increases Substantially
- Pressure Drag becomes Significant
- Fineness Ratio of 5 is Critical

Coefficient of Drag (Coefficient of Drag (Coefficie

- Pressure Drag Decreases
- Wave Drag Decreases
- Fineness Ratio of 5 is Critical

Coefficient of Drag (Coefficient of Drag (Coefficie

- X.6 Power Series
 - Fineness Ratio of 5 or 6
- Varies with Fineness Ratio
- No Blunting

Fin Design

- Mission Dependence
 - Stability (CP, CG, Roll, ...)
- Independent Variables
 - Atmospheric Density
 - Temperature
 - Wind Conditions
 - Surface Finish (Assumed Constant)
 - Angle of Attack (Assumed Zero)

Fin Optimization

- Minimize Drag
- Maintain Structural Integrity
 - Minimize Divergence
 - Minimize Bending-Torsion Flutter
 - Minimize Mass
- Maximize Fin Joint Strength
- Maintain Passive Stability

Fin Drag Optimization

- No General Solution Unearthed
 - Computational Models Exist at Subsonic, Transonic, and Supersonic Speeds
- Solution Factors
 - Velocity
 - Density
 - Lift Requirements (Corrective Moment) at Angles of Attack
 - •
- Structural Strength

Fin Count¹¹

- Fin Count > 3
 - Skin FrictionDrag Increases
 - Interference
 Drag Increases
 up to Mach 1.35

Fin Count → 3
but not always ...

Fin Tip Vortices¹

- Vortices alter Fin Effective Aspect Ratio
- Positive or Neutral Ratio Desired
 - Lower Angles of Attack for Given Lift (Increases Corrective and Damping Moments)
 - Lower Induced Drag for Given Lift
- Desire Zero or Positive Effective Aspect Ratio
- Ease of Manufacture
 - Implies Fins with a Tip Cord > 0
 - Square Edge Tips

Fin Flutter²⁰

- NASA Safety Factors
 - 15% between vehicle & flutter velocity
 - 32% between vehicle and flutter dynamic pressure

Fin Flutter¹⁶

- Stall Flutter not applicable
- Choose Shear Modulus for Material
- Apply Contingency when selecting Flutter criterion
- Criterion then used with Aspect Ratio to find Thickness Ratio
- Multiple Thickness Ratio & Cord to get Thickness

Fin Joint Drag^{1,12}

- Interference Drag
 - Minimized when fillet radius is between 4% and 8% of fin root cord
 - 10" Root Cord → 1/2" Radius
 - Consider Structural Strength
- Wing (Leading Edge) Fillets Increase Drag in the Transonic Region

Sweep Angle¹³

- 70° Sweep Angle Superior to Smaller Angles in Sub, Trans, & Supersonic Ranges
 - 4 Fin Configuration Exception in Subsonic Region

Fin Thickness^{15,17,18}

 Thinner Symmetrical Fins Result in Lower C_D in Sub, Trans, and Supersonic Regions

Leading Edge¹⁴

Leading Edge¹⁴

- At Mach 4
 - Sharp Leading Edge has Lower C_D at all Angles of Attack
 - Trapezoidal (Clipped Delta) has Lower C_D than Delta

Trailing Edge²¹

- Trailing-edge Thickness up to 0.7% Root Cord Reduces Transonic Drag
 - Does not Impact Subsonic Drag
- Trailing Edge Thickness > 0.7%
 Results in Increased Drag
- Varies with Airfoil Thickness and Optimum is < 0.7%
 - 10" Root Cord → ¹/₁₆" Thick Trailing Edge

Fin Cross Section 13,19

- Sub, Trans, and Supersonic
 - Hexagonal Lower C_D than Double Wedge
- Supersonic
 - C_D NACA 65A003
 < 65A004
 Hexagonal

Shape^{14,19}

- Supersonic Data
 - Trapezoidal (Clipped Delta) Lower
 C_D than Delta
 - Delta and Diamond have Similar C_D

Multi-Disciplinary Design Optimization (MDO)

- Optimizing Individual Components may not Result in an Optimum Design
 - Increasing Fin count from 3 to 4
 - Improving Nose Cone Fineness Ratio (3.5 vs. 7) may Result in Increased Fin Drag at Some Velocities

Summary

Optimal Nose Cones

- Subsonic Elliptical
- Transonic Von Karman (Blunted 15% of Base Diameter)
- Supersonic X³/₄ Power Series
- Hypersonic X^{.6} Power Series
- Fineness Ratio of 5

Fin Optimization

- Fin Count of 3
- Fin Joints 4% to 8% of Root Cord
- Thickness < 10% of Root Cord often between 3% & 6%
- Trailing Edge Flat but < 0.7% of Root Cord in Thickness
- Leading Edge may be Sharp
- Sweep Angle between 45° and 70°
- Flat Fin Tips
- Hexagonal Cross Section
- Clipped Delta Shape

Appendices

Nose Cones

Nose Cone Geometries

- Conical
- Elliptical
- Ogive (Tangent)
- Parabolic
- Power Series
- Sears-Haack (Von Karman)

Nose Cone Parameters

- L is the overall length of the nosecone
- R is the radius of the base of the nosecone
- y is the radius at any point x, as x varies from 0 at the tip of the nosecone to L
- The full body of revolution of the nosecone is formed by rotating the profile around the centerline (C_L)

Conical Nose Cones

- The sides of a cone are straight lines, so the diameter equation is simply, y = Rx/L
- Cones are sometimes defined by their 'half angle', ϕ = tan⁻¹(R/L) and y = x tan ϕ
- $C_p = \frac{L}{3}$
- $V = \pi R^2 L/3$
- $S = \pi R(R^2 + L^2)^{.5}$

Elliptical Nose Cones

- The profile of this shape is one-half of an ellipse, with the major axis being the centerline and the minor axis being the base of the nosecone
- This shape is advantageous for subsonic flight due to its blunt nose and tangent base
- It is defined by: $y = R(1-x^2/L^2)^{1/2}$
- $C_p = \frac{3L}{2}$
- $V=2\pi R^2 L/3$
- $S=\pi L^2+[\pi R^2/\sigma[\ln{(1+\sigma)/(1-\sigma)}]]/2$ where $\sigma=(L^2+R^2)/L$

Tangent Ogive Nose Cones

- This shape is formed by a circle segment where the base is on the circle radius and the airframe is tangent to the curve of the nosecone at its base
- The radius of the circle that forms the ogive is: $\rho = (R^2 + L^2)/2R$
- The radius y at any point x, as x varies from 0 to L is: y = (ρ²-(x-L)²)½+R-ρ where L≤ρ
- $C_p = V/\pi R^2$
- $V=\pi[L\sigma^2 L^3/\sigma (\sigma^3 R\sigma^2)\sin^{-1}(L/\sigma)]$ where $\sigma=(R^2 + L^2)/2R$
- S=?

Parabolic Nose Cones

- The Parabolic Series nose shape is generated by rotating a segment of a parabola around a line parallel to its axis of symmetry.
- $y=R\{(2[x/L]-K[x/L]^2)/(2-K)\}$ for $0 \le K \le 1$
 - K=0 for a CONE
 - K= .5 for a 1/2 PARABOLA
 - K= .75 for a 3/4 PARABOLA
 - K= 1 for a PARABOLA (base tangent to airframe)
- C_p=L/2
- $V = \pi R^2 L/2$
- S=R²/4L

Power Series Nose Cones

- The Power Series shape is characterized by its (usually) blunt tip, and by the fact that its base is not tangent to the body tube.
- The Power series nose shape is generated by rotating a parabola about its major axis. The base of the nosecone is parallel to the latus rectum of the parabola, and the factor *n* controls the 'bluntness' of the shape. As *n* decreases towards zero, the Power Series nose shape becomes increasingly blunt; at values of *n* above about .7, the tip becomes sharp.
- y=R(×/,)n for 0≤n≤1
 - n = 1 for a CONE
 n = .75 for a ¾ POWER
 n = .5 for a ½ POWER (PARABOLA)
 n = 0 for a CYLINDER
- C_p=?
- V=?
- S=?

Sears-Haack Nose Cones

- Not constructed from geometric figures
- Mathematically derived for drag minimization
- Not tangent to body at base
- Rounded not sharp nose tips
- $y = R\{\theta [\sin(2\theta)/2] + C\sin^3(\theta)\}^{1/2}/(\pi)^{1/2}$ where $0 \le C$ and $\theta = \cos^{-1}(1-2x/L)$
 - C = 0 minimum drag for given Length and Volume (LV)
 - C = 1/3 minimum drag for given Length and Diameter (LD Von Karman)
- $C_p = \frac{L}{2}$ Von Karman; $C_p = .437L$ LV-Haack
- V=?
- S=?

Nose Cone References

- 1. Topics in Advanced Model Rocketry; Mandell, Gordon K.; Caporaso, George J.; Bengen, William P.; The MIT Press; 1973
- 2. Investigation of the Drag of Various Axially Symmetric Nose Shapes of Fineness Ratio 3 for Mach Numbers from 1.24 to 3.67; Perkins, Edward W.; Jorgensen, Leland H.; NACA Research Memorandum A52H28; 1952.
- 3. Investigation of the Drag of Various Axially Symmetric Nose Shapes of Fineness Ratio 3 for Mach Numbers from 1.24 to 7.4; Perkins, Edward W.; Jorgensen, Leland H.; Sommer, Simon C.; NACA Technical Report 1386; 1958.
- 4. Transonic Drag Measurements of Eight-Body Nose Shapes; Stoney, Jr., William, G.; NACA Research Memorandum L53K17; 1954.
- 5. The Effect of Bluntness on the Drag of Spherical-Tipped Truncated Cones of Fineness Ratio 3 at Mach Numbers 1.2 to 7.4; Sommer, Simon C.; Stark, James A.; NACA Research Memorandum A52B13; 1954.
- 6. Pressure Drag of Bodies at Mach Numbers up to 2.0; Nelson, Robert L.; Stoney, Jr., William, G.; NACA Research Memorandum L53122c; 1953.
- 7. Bodies of Revolution having Minimum Drag at High Supersonic Airspeeds; Eggers Jr, A. J.; Resnikoff, Meyer M.; Dennis, David H.; NACA Technical Report 1306, 1957.
- 8. Hypersonic Aerodynamic Performance of Minimum-Wave-Drag Bodies; Spencer, Jr., Bernard; Fox Jr., Charles H.; NASA Technical Report R-250; 1966.
- 9. Longitudinal Aerodynamic Performance of a Series of Power-Law and Minimum-Wave-Drag Bodies at Mach 6 and Several Reynolds Numbers; Ashby Jr., George C.; NASA Technical Memorandum X-2713; 1974.
- 10. Performance and Dynamics of Aerospace Vehicles; Love, E. S.; NASA SP-258; 1971; pages 103-174.

Fin References

- 11. Effect of Number of Fins on the Drag of a Pointed Body of Revolution at Low Supersonic Velocities; Mastrocola, N; NACA Research Memorandum L7A08; 1947.
- 12. Transonic Drag Characteristics of a Wing-Body Combination Showing the Effect of a Large Wing Fillet; Cheatham, Donald C.; Kurbjun, Max C.; NACA Research Memorandum L8F08; 1948.
- 13. Damping in Roll of Models with 45°, 60°, and 70° Delta Wings Determined at High Subsonic, Transonic, and Supersonic Speeds with Rocket-Powered Models; Saunders Jr, E Claude; NACA Research Memorandum L52D22a; 1952.
- 14. Aerodynamic Characteristics of Two Delta Wings and Two Trapezoidal Wings at Mach 4.04; Dunning, Robert W.; Smith, Fred W.; NACA Research Memorandum L53D30A; 1953.
- 15. Results of a Flight Investigation to Determine the Zero-Lift Drag Characteristics of a 60° Delta Wing with NACA 65-006 Airfoil Section and Various Double-Wedge Sections at Mach Numbers from 0.7 to 1.6; Welsh, Clement J.; NACA Technical Note 3650; 1956.
- 16. Summary of Flutter Experiences as a Guide to the Preliminary Design of Lifting Surfaces on Missiles; Martin, Dennis J.; NACA Technical Note 4197; 1958.
- 17. The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; Jacobs, Eastman N.; Ward, Kenneth E.; Pinkerton, Robert N; NACA Technical Report 460; 1948.
- 18. Tests of 16 Related Airfoils at High Speeds; Stack, John; Von Doenhoff, Albert E.; NACA Technical Report 492; 1935.
- 19. Free-Flight Measurements of the Zero-Lift Drag of Several Wings at Mach Numbers from 1.4 to 3.8; Jackson, H. Herbert; NASA Technical Note D-395; 1960.
- 20. Aeroelastic Optimization of Sounding Rocket Fins; Simmons III, Joseph R.; Air Force Institute of Technology; 2009.
- 21. NASA Supercritical Airfoils; Harris, Charles D.; NASA Technical Paper 2969; 1990.

MDO References

1. Results of Flight Tests at Supersonic Speeds to Determine the Effect of Body Nose Fineness Ratio on Body and Wing Drag; Katz, Ellis R; NACA Research Memorandum L7B19; 1947.

Selected Websites

- http://exploration.grc.nasa.gov/e ducation/rocket/guided.htm
- http://ntrs.nasa.gov/search.jsp
- http://www.apogeerockets.com/ Peak-of-Flight_index.asp
- http://www.rocketmaterials.org/
- http://www.aerorocket.com/