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Purpose 

 

Focus is on drag optimization to 

maximize rocket performance!  
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Definitions
1 

• Drag Coefficient 

• Parasitic Drag 

• Form/Pressure/Profile Drag 

− Dependence upon the profile of the object 

− Base Drag 

– Due to Boundary Layer separation at base of airframe/fins 

• Skin Friction (Viscous) Drag 

− Friction of the fluid against the skin of the object 

• Interference Drag 

− Incremental drag above sum of all other drag components. 

Created at protrusion intersections. 

• Induced (Lift-Induced) Drag 

• Due to redirection of airflow 

• Wave (Compressibility) Drag 

• Due to shockwaves when moving near or above the speed 

of sound (typically leading & trailing edges) 

• Rotational Drag 

• Circumferential velocity from roll will thicken boundary 

layer and result in increased drag 
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Definitions
1 

• Wetted Area 

• Surface Area exposed to airflow 

• Fineness (Aspect) Ratio 

• Nose Cone Length/Base Diameter 

• Bluffness Ratio 

• Tip Diameter/Base Diameter 

• Hemispherical Blunting 

• Me’plat Diameter is a Flat Truncation 

(e.g., bullets and artillery shells) 
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Definitions
1 

• Laminar Boundary Layer 

• Fluid streams move in parallel (negligible transfer 

of momentum) 

• Turbulent Boundary Layer 

• Fluid streams transverse with velocity variations 

around an average value 

• Boundary Layer Separation 

• Boundary layer separates from object’s surface 

creating an effective profile 

• Reynolds Number 

• Dimensionless ratio of inertial / viscous forces 

• http://www.grc.nasa.gov/WWW/BGH/reynolds.html 

 

http://www.grc.nasa.gov/WWW/BGH/reynolds.html
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Definitions
1 

• Aspect Ratio (AR) 

• Fin Span / Average Fin Cord 

• Effective Aspect Ratio 

• Working AR due to Airflow Effects 

• Taper Ratio 

• Tip Cord / Root Cord 
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Definitions 

• Thrust Profile 

• Thrust vs. Time Curve 

• Velocity Definitions 

• Subsonic: < .8 Mach 

• Transonic: .8 to 1.2  Mach 

• Supersonic: 1.2 to 5 Mach 

• Hypersonic: > 5 Mach 
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Mission Parameters 

• Velocity 

• Coefficient of Drag 

• Thrust Profile 

• Total Mass 

• Altitude 

• Coefficient of Drag 

• Thrust Profile 

• Total and Coasting Mass 

• Mass 

• Material Volume and Strength 

• Payload 

• Payload 

• Available Volume 

• Stability Impacts 

• Stability (CP&CG - Discussed Last Year) 
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Nose Cone Design 

• Mission Dependent Variables 

• Payload 

• Stability (CP, CG) 

• Independent Variables 

• Atmospheric Density 

• Temperature 

• Wind Conditions 

• Surface Finish 

• Angle of Attack 
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Nose Cone Design 

• Assumptions 

• Zero Angle of Attack 

• Constant Surface Finish 

• No Roll 

• No Aerodynamic Heating Effects 
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Nose Cone Solutions 

Subsonic
1 

1. Elliptical 

Transonic
4 

1. LD-Haack (Von Karman) 

2. X
½

 Power Series 

3. LV-Haack (< Mach 1) 

Supersonic
7 

1. Eggers Minimum Drag 

2. X
¾
 Power Series 

Hypersonic
8,9,10 

1. Love Minimum Drag 

2. X
.6 

Power Series 



Copyright © 2011 by Off We Go Rocketry 13 

Fineness Ratio
6,7 

• Increasing 

Fineness Ratio 

• Decreases Wave 

Drag 

• Increases Skin 

Friction Drag 

• Optimum Ratio is 

approximately 5 
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Bluntness Ratio
2,3,5 

• Optimal ratio is .15 

• Provided length 

remains constant 

• Applicability 

dependent upon 

fineness ratio and 

velocity 

• Fineness ratio ≤ 5 

• Below Hypersonic 
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Coefficient of Drag (C
D
) 

Subsonic
1 

• Primarily Skin Friction Drag 

• Minimal Pressure Drag 

• No Wave Drag 

• No Interference Drag 

• No Induced Drag 

• Elliptical 

• Fineness Ratio of 2 
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Coefficient of Drag (C
D
) 

Transonic
4 

• Wave Drag Increases Substantially 

• Pressure Drag becomes Significant 

• Fineness Ratio of 5 is Critical 

1 
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4 

4 Tangent Ogive 

Conical 

LV-HAACK 

Von Karman 

(LD-HAACK) 
Parabola 

3/4 Parabola 

1/2 Parabola 

x3/4 Power   

x1/2 Power 

Comparison of drag characteristics of various nose shapes in the transonic-to- 

low Mach regions.  Rankings are: superior (1), good (2), fair (3), inferior (4). 
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Coefficient of Drag (C
D
) 

Supersonic
7 

• Pressure Drag 

Decreases 

• Wave Drag 

Decreases 

• Fineness Ratio 

of 5 is Critical 
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Coefficient of Drag (C
D
) 

Hypersonic
8,9,10 

• X
.6
 Power Series 

• Fineness Ratio of 5 

or 6 

• Varies with 

Fineness Ratio 

• No Blunting 



Copyright © 2011 by Off We Go Rocketry 19 

Fin Design 

• Mission Dependence 

• Stability (CP, CG, Roll, …) 

• Independent Variables 

• Atmospheric Density 

• Temperature 

• Wind Conditions 

• Surface Finish (Assumed Constant) 

• Angle of Attack (Assumed Zero) 
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Fin Optimization 

• Minimize Drag 

• Maintain Structural Integrity 

• Minimize Divergence 

• Minimize Bending-Torsion Flutter 

• Minimize Mass 

• Maximize Fin Joint Strength 

• Maintain Passive Stability 
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Fin Drag Optimization 

• No General Solution Unearthed 

• Computational Models Exist at Subsonic, 

Transonic, and Supersonic Speeds 

• Solution Factors 

• Velocity 

• Density 

• Lift Requirements (Corrective Moment) 

at Angles of Attack 

• … 

• Structural Strength 
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Fin Count
11 

• Fin Count > 3 

• Skin Friction 

Drag Increases 

• Interference 

Drag Increases 

up to Mach 1.35 

Fin Count → 3 

 but not always … 
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Fin Tip Vortices
1 

• Vortices alter Fin Effective Aspect Ratio 

• Positive or Neutral Ratio Desired 

• Lower Angles of Attack for Given Lift (Increases Corrective and 

Damping Moments) 

• Lower Induced Drag for Given Lift 

• Desire Zero or Positive Effective Aspect Ratio 

• Ease of Manufacture 

• Implies Fins with a Tip Cord > 0 

• Square Edge Tips  

Desired 

P
r
e

f
e

r
r
e

d
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Fin Flutter
20

 

• NASA Safety 

Factors
 

• 15% between 

vehicle & flutter 

velocity 

• 32% between 

vehicle and 

flutter dynamic 

pressure 
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Fin Flutter
16 

• Stall Flutter not applicable 

• Choose Shear Modulus for 

Material 

• Apply Contingency when 

selecting Flutter criterion 

• Criterion then used with Aspect 

Ratio to find Thickness Ratio 

• Multiple Thickness Ratio & Cord 

to get Thickness 
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Fin Joint Drag
1,12 

• Interference Drag 

• Minimized when fillet radius is 

between 4% and 8% of fin root cord 

• 10” Root Cord → 
1
/
2
” Radius 

• Consider Structural Strength 

• Wing (Leading Edge) Fillets 

Increase Drag in the Transonic 

Region 
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Sweep Angle
13 

• 70° Sweep Angle Superior to Smaller 

Angles in Sub, Trans, & Supersonic 

Ranges 

• 4 Fin Configuration Exception in 

Subsonic Region 
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Fin Thickness
15,17,18 

• Thinner Symmetrical Fins Result in 

Lower C
D
 in Sub, Trans, and 

Supersonic Regions 
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Leading Edge
14 
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Leading Edge
14 

• At Mach 4 

• Sharp Leading Edge has Lower C
D
 at all 

Angles of Attack 

• Trapezoidal (Clipped Delta) has Lower C
D
 

than Delta 
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Trailing Edge
21 

• Trailing-edge Thickness up to  0.7% 

Root Cord Reduces Transonic Drag 

• Does not Impact Subsonic Drag 

• Trailing Edge Thickness > 0.7% 

Results in Increased Drag 

• Varies with Airfoil Thickness and 

Optimum is < 0.7% 

• 10” Root Cord → 
1
/
16

” Thick Trailing Edge 
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Fin Cross Section
13,19 

• Sub, Trans, and 

Supersonic 

• Hexagonal 

Lower C
D
 than 

Double Wedge 

• Supersonic 

• C
D
 NACA 65A003 

< 65A004 < 

Hexagonal 
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Shape
14,19 

• Supersonic Data 

• Trapezoidal (Clipped Delta) Lower 

C
D
 than Delta 

• Delta and Diamond have Similar C
D 
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Multi-Disciplinary Design 

Optimization (MDO)
x 

• Optimizing Individual Components may not 

Result in an Optimum Design 

• Increasing Fin count from 3 to 4 

• Improving Nose Cone Fineness Ratio (3.5 vs. 7) 

may Result in Increased Fin Drag at Some 

Velocities 
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Summary 

• Optimal Nose Cones 

• Subsonic – Elliptical 

• Transonic – Von Karman (Blunted 15% of Base Diameter) 

• Supersonic - X
¾

 Power Series 

• Hypersonic – X
.6

 Power Series 

• Fineness Ratio of 5 

• Fin Optimization 

• Fin Count of 3 

• Fin Joints 4% to 8% of Root Cord 

• Thickness < 10% of Root Cord often between 3% & 6% 

• Trailing Edge Flat but < 0.7% of Root Cord in Thickness 

• Leading Edge may be Sharp 

• Sweep Angle between 45° and 70° 

• Flat Fin Tips 

• Hexagonal Cross Section 

• Clipped Delta Shape 



Appendices 

Nose Cones 
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Nose Cone Geometries 

• Conical 

• Elliptical 

• Ogive (Tangent) 

• Parabolic 

• Power Series 

• Sears-Haack (Von Karman) 
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Nose Cone Parameters 

• L is the overall length of the nosecone 

• R is the radius of the base of the nosecone 

• y is the radius at any point x, as x varies from 0 at the tip 

of the nosecone to L 

• The full body of revolution of the nosecone is formed by 

rotating the profile around the centerline (C
L
) 

Dimensions used in 

the equations 

L 

R 

x = 0 x = L 

x 

y 

C
L
 

y = R y = 0 
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Conical Nose Cones 

• The sides of a cone are straight lines, so the diameter 

equation is simply, y = 
Rx

/
L 

• Cones are sometimes defined by their ‘half angle’,  = tan
-

1
(
R
/
L
) and y = x tan  

• C
p
=

L
/
3 

• V=πR
2
L/3 

• S= πR(R
2
 + L

2
)
.5 

 

L 

R 

C
L
 

y
xR

L
y

xR

L

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Elliptical Nose Cones 

• The profile of this shape is one-half of an ellipse, with the major 

axis being the centerline and the minor axis being the base of 

the nosecone 

• This shape is advantageous for subsonic flight due to its blunt 

nose and tangent base 

• It is defined by: y = R(1-
x
2

/
L
2)

½ 

• C
p
=

3L
/
2 

• V=2πR
2
L/3 

• S=πL
2
+[πR

2
/σ[ln{(1+σ)/(1-σ)}]]/2 where σ=(L

2
+R

2
)/L

 

L 

R 

C
L
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Tangent Ogive Nose Cones 

• This shape is formed by a circle segment where the base is on 

the circle radius and the airframe is tangent to the curve of the 

nosecone at its base 

• The radius of the circle that forms the ogive is: ρ = (R
2
 + L

2
)/2R 

• The radius y at any point x, as x varies from 0 to L is: y = (ρ
2
-(x-

L)
2
)
½

+R- ρ where L≤ρ 

• C
p
=V/πR

2 

• V=π[Lσ
2
 - L

3
/σ – (σ

3
 - Rσ

2
)sin

-1
(L/σ)] where σ=(R

2
 + L

2
)/2R 

• S=? 

L 

R 

Ogive 

Radius 

 

C
L
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Parabolic Nose Cones 

• The Parabolic Series nose shape is generated by rotating a 

segment of a parabola around a line parallel to its axis of 

symmetry. 

• y=R{(2[
x
/
L
]-K[

x
/
L
]
2
)/(2-K)} for 0≤K≤1 

• K= 0  for a CONE 

• K= .5 for a 1/2 PARABOLA 

• K= .75 for a 3/4 PARABOLA 

• K= 1 for a PARABOLA (base tangent to airframe) 

• C
p
=

L
/
2 

• V= πR
2
L/2 

• S=R
2
/4L 

R 

L 

C
L
 

Full Parabola K=1 

Axis of Symmetry 
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Power Series Nose Cones 

• The Power Series shape is characterized by its (usually) blunt tip, and by the fact that its base is not 

tangent to the body tube. 

• The Power series nose shape is generated by rotating a parabola about its major axis.  The base of the 

nosecone is parallel to the latus rectum of the parabola, and the factor n controls the ‘bluntness’ of the 

shape. As n decreases towards zero, the Power Series nose shape becomes increasingly blunt; at 

values of n above about .7, the tip becomes sharp.  

• y=R(
x
/
L
)
n
 for 0≤n≤1 

• n = 1 for a CONE 

• n = .75 for a ¾ POWER 

• n = .5 for a ½ POWER (PARABOLA) 

• n = 0 for a CYLINDER  

• C
p
=? 

• V=? 

• S=? 

L 

R 

Power Series 

C
L
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Sears-Haack Nose Cones 

• Not constructed from geometric figures 

• Mathematically derived for drag minimization 

• Not tangent to body at base 

• Rounded not sharp nose tips 

• y = R{θ-[sin(2θ)/2]+Csin
3
(θ)}

1/2
/(π)

1/2
 where 0≤C and θ = cos

-1
(1-2x/L) 

• C = 0 minimum drag for given Length and Volume (LV) 

• C = 1/3 minimum drag for given Length and Diameter (LD - Von Karman) 

• C
p
=

L
/
2
 Von Karman; C

p
= .437L LV-Haack 

• V=? 

• S=? 

L 

R 

Sears-Haack 

C
L
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Selected Websites 

• http://exploration.grc.nasa.gov/e

ducation/rocket/guided.htm 

• http://ntrs.nasa.gov/search.jsp 

• http://www.apogeerockets.com/

Peak-of-Flight_index.asp 

• http://www.rocketmaterials.org/ 

• http://www.aerorocket.com/ 


